Search results for "beta-aminobutyric acid"

showing 2 items of 2 documents

Priming: getting ready for battle

2006

International audience; Infection of plants by necrotizing pathogens or colonization of plant roots with certain beneficial microbes causes the induction of a unique physiological state called “priming.” The primed state can also be induced by treatment of plants with various natural and synthetic compounds. Primed plants display either faster, stronger, or both activation of the various cellular defense responses that are induced following attack by either pathogens or insects or in response to abiotic stress. Although the phenomenon has been known for decades, most progress in our understanding of priming has been made over the past few years. Here, we summarize the current knowledge of p…

0106 biological sciencesInsectaPhysiology[SDV]Life Sciences [q-bio]beta-Aminobutyric acidPriming (agriculture)01 natural sciencesPlant Physiological Phenomenachemistry.chemical_compoundsalicylic acid.ethylenePlant biology (Botany)0303 health sciencesAminobutyratesJasmonic acidfood and beveragesGeneral MedicinePlantsLife sciencesmycorrhizal fungimycorhizeBiologieSignal Transductionacide jasmoniquesalicylic acidBiologyMicrobiology03 medical and health sciencesβ-aminobutyric acidMycorrhizal fungiAnimalsβ-aminobutyric acid;bacterial lipopolysaccharides;ethylene;jasmonic acid;mycorrhizal fungi;salicylic acid.Plant Physiological Phenomena030304 developmental biologyacide aminobutyriquePlant rootsAbiotic stressjasmonic acidfungiEthylenesCellular defenseImmunity Innateß-aminobutyric acidbacterial lipopolysaccharideschemistryéthylènefungiAgronomy and Crop Science010606 plant biology & botanyMolecular Plant-Microbe Interactions
researchProduct

The plant resistance inducer β-aminobutyric acid (BABA) induces an iron deficiency response in A. thaliana

2012

β-aminobutyric acid (BABA) is a well-known plant resistance inducer. However, the molecular mechanisms underlying its effects are poorly understood. In the present study, we investigated whether BABA could act through the modification of iron homeostasis in Arabidopsis thaliana. Supporting this assumption, we obtained first evidences that BABA chelates iron with high affinity. We showed that pre-treatment of plants with BABA induced a drastic but transient iron deficiency response. Quantification of iron indicated that this response is related to the perturbation of iron distribution/availability rather than a reduction of iron assimilation. Finally, we provided evidence that the iron defic…

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencesresistanceiron deficiency[SDV]Life Sciences [q-bio]arabidopsis thaliana[SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologybeta-aminobutyric acidbotrytis cinerea
researchProduct